>咨询服务>市场调研>中国节能与新能源汽车技术路线深.. 免费发布市场调研信息
广告
热门浏览

中国节能与新能源汽车技术路线深度分析报告

更新时间:2023-04-18 15:04:01 信息编号:s61s6nmf758503
中国节能与新能源汽车技术路线深度分析报告
  • 面议

  • 节能与新能源汽车技术

分享

详情介绍

服务项目
节能与新能源汽车技术
面向地区
全国

中国节能与新能源汽车技术路线深度分析报告

‍2023-2027年中国节能与新能源汽车技术路线深度分析及发展规划咨询综合研究报告

章 中国汽车产业节能技术发展综合分析
二章 中国新能源汽车技术路线分析
2.1 中国新能源汽车产业发展现状
2.1.1 新能源汽车主要类型
2.1.2 新能源汽车产业链
2.1.3 新能源汽车价值链
2.1.4 新能源汽车发展历程
2.1.5 新能源汽车政策汇总
2.1.6 新能源汽车产销规模
2.1.7 新能源汽车市场结构
2.1.8 新能源汽车价格特征
2.1.9 新能源汽车竞争格局
2.1.10 新能源汽车核心驱动力
2.2 中国新能源汽车技术指标分析
2.2.1 新能源汽车工作原理
2.2.2 新能源汽车技术体系
2.2.3 行业技术经济综合评价
2.2.4 行业技术效能指标体系
2.2.5 新能源汽车行业专利数量
2.2.6 新能源汽车专利技术构成
2.2.7 新能源汽车专利创新主体
2.2.8 新能源汽车人才短缺数量
2.3 中国新能源汽车技术发展状况
2.3.1 新能源汽车技术发展周期
2.3.2 新能源汽车技术发展成就
2.3.3 新能源汽车技术发展现状
2.3.4 新能源汽车关键技术发展
2.3.5 新能源汽车科技创新状况
2.3.6 比亚迪与特斯拉技术对比
2.4 中国新能源汽车技术发展问题及建议
2.4.1 新能源汽车行业面临风险
2.4.2 新能源汽车风险应对措施
2.4.3 新能源汽车技术发展问题
2.4.4 新能源汽车技术发展策略
2.4.5 新能源汽车技术政策建议
2.4.6 新能源汽车技术提升路径
2.4.7 新能源汽车人才培养路径
2.5 中国新能源汽车技术发展展望
2.5.1 新能源汽车行业发展前景
2.5.2 新能源汽车行业发展趋势
2.5.3 新能源汽车技术发展趋势
2.5.4 新能源汽车技术研究方向
2.5.5 新能源汽车技术发展方向
2.5.6 新能源汽车技术投资机遇
三章 纯电动和插电式混合动力汽车技术路线分析
3.1 中国纯电动汽车市场运行状况
3.1.1 纯电动车市场
3.1.2 国内纯电动车产销量
3.1.3 纯电动汽车保有量
3.1.4 纯电动汽车补贴金额
3.1.5 纯电动汽车续航里程
3.1.6 纯电动汽车平均电量
3.1.7 纯电动汽车平均电耗
3.2 中国纯电动汽车技术路线分析
3.2.1 电动汽车主要类型
3.2.2 纯电动汽车工作原理
3.2.3 纯电动汽车技术优势
3.2.4 纯电动汽车核心技术
3.2.5 纯电动汽车专利数量
3.2.6 纯电动平台必要性分析
3.2.7 高电压快充平台技术
3.2.8 纯电动汽车技术路线图
3.2.9 电动汽车技术发展趋势
3.3 中国插电式混合动力汽车市场运行状况
3.3.1 插电式混合动力汽车发展意义
3.3.2 插电式混合动力汽车产销量
3.3.3 插电式混合动力汽车市场格局
3.3.4 插电式混合动力汽车用户需求
3.3.5 插电式混合动力汽车发展问题
3.3.6 插电式混合动力汽车发展建议
3.4 中国插电式混合动力汽车技术路线分析
3.4.1 混合动力汽车的基本原理
3.4.2 混合动力汽车能耗测试标准
3.4.3 混合动力系统技术架构分析
3.4.4 混合动力汽车技术发展现状
3.4.5 混合动力汽车核心技术优势
3.4.6 混合动力汽车关键技术分析
3.4.7 混合动力汽车专利申请数量
3.4.8 国产混合动力技术发展水平
3.4.9 新型混合动力汽车技术动态
3.5 中国增程式电动汽车行业发展综述
3.5.1 插电式和增程式电动汽车对比
3.5.2 增程式电动汽车技术发展优势
3.5.3 增程式电动汽车市场运行现状
3.5.4 电动车涨价对行业的影响分析
3.5.5 增程式电动汽车未来发展展望
3.6 中国混合动力汽车技术发展展望
3.6.1 混合动力汽车发展动力
3.6.2 混合动力汽车发展前景
3.6.3 混合动力汽车竞争趋势
3.6.4 插电式与增程式混动技术
3.6.5 混合动力汽车技术展望
3.6.6 混合动力汽车技术路线图
四章 氢燃料电池汽车技术路线分析
4.1 氢燃料电池汽车市场分析
4.1.1 氢燃料电池产业链
4.1.2 氢燃料电池汽车销量
4.1.3 氢燃料电池汽车保有量
4.1.4 企业氢能汽车销量
4.1.5 氢燃料电池汽车发展展望
4.2 中国燃料电池汽车市场运行分析
4.2.1 发展燃料电池汽车必要性
4.2.2 燃料电池汽车产业政策
4.2.3 燃料电池汽车产销规模
4.2.4 燃料电池汽车产品结构
4.2.5 燃料电池细分车型销量
4.2.6 燃料电池汽车城市销量
4.2.7 燃料电池系统装机规模
4.2.8 燃料电池系统竞争格局
4.2.9 燃料电池汽车竞争格局
4.3 中国氢能技术发展路线分析
4.3.1 氢能产业基本介绍
4.3.2 主要制氢路径对比
4.3.3 不同储运氢方式对比
4.3.4 加氢站的工作原理
4.3.5 氢能专利申请数量
4.3.6 各环节关键技术现状
4.3.7 氢能主要应用场景
4.3.8 氢能供需状况预测
4.4 中国燃料电池制造技术原理及构成
4.4.1 燃料电池系统工作原理
4.4.2 燃料电池系统成本构成
4.4.3 燃料电池系统关键部件
4.4.4 燃料电池堆的关键技术
4.4.5 燃料电池制备工艺流程
4.4.6 燃料电池专利申请数量
4.4.7 燃料电池专利创新主体
4.5 中国氢燃料电池汽车技术发展水平
4.5.1 燃料电池汽车技术架构
4.5.2 燃料电池车技术水平
4.5.3 氢燃料电池汽车技术布局
4.5.4 氢燃料电池汽车技术进程
4.5.5 氢燃料电池汽车主流技术
4.5.6 运输领域氢燃料电池专利
4.6 中国氢燃料电池汽车技术发展展望
4.6.1 氢燃料电池产业发展机遇
4.6.2 氢燃料电池汽车推广目标
4.6.3 氢燃料电池汽车成本目标
4.6.4 氢燃料电池汽车技术路线图
4.6.5 氢燃料电池汽车技术展望
4.6.6 氢燃料电池重卡技术方向
五章 智能网联汽车技术路线分析
5.1 国际智能网联汽车产业发展综述
5.1.1 智能网联汽车产业政策
5.1.2 美国智能网联汽车发展
5.1.3 欧洲智能网联汽车发展
5.1.4 日本智能网联汽车发展
5.1.5 韩国智能网联汽车发展
5.1.6 智能网联汽车企业布局
5.1.7 智能网联汽车跨界融合
5.1.8 智能网联汽车技术进展
5.1.9 智能网联汽车技术路线
5.2 中国智能网联汽车行业发展现状
5.2.1 智能网联汽车战略价值
5.2.2 智能网联汽车政策环境
5.2.3 智能网联汽车产业链分析
5.2.4 智能网联乘用车发展热点
5.2.5 智能网联乘用车销量分析
5.2.6 智能网联汽车市场结构
5.2.7 智能网联汽车品牌销量
5.2.8 智能网联汽车发展模式
5.2.9 智能网联汽车产业化挑战
5.2.10 智能网联汽车发展建议
5.3 中国智能网联汽车相关专利分析
5.3.1 智能网联汽车专利申请阶段
5.3.2 智能网联汽车专利技术构成
5.3.3 智能网联汽车专利创新主体
5.3.4 车联网领域专利创新主体
5.3.5 智能感知领域专利创新主体
5.4 中国智能网联汽车技术发展状况
5.4.1 智能网联汽车技术等级划分
5.4.2 智能网联汽车总体技术架构
5.4.3 智能网联汽车技术发展成果
5.4.4 智能网联汽车技术应用现状
5.4.5 智能网联汽车技术商业化应用
5.4.6 智能网联汽车企业技术布局
5.4.7 智能网联汽车技术面临挑战
5.4.8 智能网联汽车技术发展对策
5.5 中国智能驾驶核心零部件及关键技术发展
5.5.1 车载摄像头
5.5.2 汽车雷达
5.5.3 车规级AI芯片
5.5.4 车辆线控执行系统
5.5.5 智能驾驶域控制器
5.5.6 智能座舱
5.5.7 基础支撑关键技术
5.5.8 信息交互关键技术
5.5.9 整车集成技术
5.5.10 自动驾驶技术
5.6 中国车联网技术发展现状及趋势分析
5.6.1 国外车联网标准进展
5.6.2 国内车联网标准进展
5.6.3 车联网产业发展现状
5.6.4 车联网市场规模分析
5.6.5 车联网商业模式分析
5.6.6 车联网关键技术发展
5.6.7 车联网技术应用进展
5.6.8 车联网技术演进路径
5.6.9 车联网技术发展展望
5.7 中国智能网联汽车技术发展展望
5.7.1 智能驾驶汽车市场发展空间
5.7.2 智能网联汽车产业发展愿景
5.7.3 智能网联汽车技术研究方向
5.7.4 智能网联车路协同技术路线
5.7.5 智能网联汽车技术路线图
六章 汽车动力蓄电池技术路线分析
6.1 中国动力电池市场运行分析
6.1.1 动力电池成本构成
6.1.2 动力电池产业链结构
6.1.3 动力电池行业政策
6.1.4 动力电池市场
6.1.5 中国动力电池产量
6.1.6 中国动力电池销量
6.1.7 中国动力电池装车量
6.1.8 动力电池价格走势
6.1.9 动力电池出口规模
6.1.10 动力电池企业装车
6.2 中国动力电池关键材料技术发展现状
6.2.1 正极材料技术现状
6.2.2 负极材料技术现状
6.2.3 电池隔膜技术现状
6.2.4 电解液技术现状
6.3 中国动力电池制造技术发展现状
6.3.1 动力电池主要技术指标
6.3.2 动力电池专利申请数量
6.3.3 动力电池专利创新主体
6.3.4 动力电池平均能量密度
6.3.5 动力电池技术多元化发展
6.3.6 动力电池人力需求状况
6.4 不同种类动力电池技术路线分析
6.4.1 三元与磷酸铁锂电池对比
6.4.2 三元锂电池技术发展
6.4.3 磷酸铁锂电池技术专利
6.4.4 磷酸锰铁锂电池技术
6.4.5 固态电池技术发展
6.4.6 钠离子电池技术发展
6.4.7 电池单体电芯技术发展
6.4.8 动力电池封装技术发展
6.5 动力电池梯次利用及回收利用技术现状
6.5.1 动力电池回收产业链
6.5.2 动力电池回收相关政策
6.5.3 废旧锂离子电池回收量
6.5.4 动力电池回收市场规模
6.5.5 废旧动力电池回收模式
6.5.6 动力电池回收体系建设
6.5.7 动力电池回收企业数量
6.5.8 退役电池主流回收方法
6.5.9 动力电池回收专利规模
6.5.10 动力电池梯次利用技术
6.5.11 动力电池报废回收技术
6.6 中国动力电池技术发展展望
6.6.1 动力电池未来发展格局
6.6.2 动力电池技术发展机遇
6.6.3 动力电池技术发展方向
6.6.4 动力电池技术发展趋势
6.6.5 动力电池技术路线图
七章 新能源汽车电驱动总成系统技术路线分析
7.1 新能源车电驱动总成系统产业链及成本分析
7.1.1 电驱动总成系统产业链
7.1.2 电驱动系统主要功能
7.1.3 新能源汽车电机的分类
7.1.4 新能源车驱动用电机类型
7.1.5 电机电控成本构成分析
7.1.6 驱动电机成本结构分析
7.1.7 电机控制器成本构成分析
7.2 中国新能源车电驱动总成系统市场运行分析
7.2.1 新能源车驱动电机装机
7.2.2 新能源车电驱动系统功率
7.2.3 国内外驱动电机供应链
7.2.4 驱动电机企业市场份额
7.2.5 乘用车电控配套企业
7.2.6 新能源汽车变速器发展
7.2.7 新能源汽车减速器发展
7.3 中国新能源车电驱动总成系统技术发展状况
7.3.1 国内外电机技术对比分析
7.3.2 新能源车驱动电机关键技术
7.3.3 永磁同步驱动电机技术类型
7.3.4 新能源车电机扁线绕组技术
7.3.5 新能源车驱动电机冷却技术
7.3.6 新能源车电机控制器原理
7.3.7 新能源车减速器技术路线
7.3.8 新能源车电控系统技术发展
7.3.9 电驱动总成系统集成方式
7.3.10 纯电动车动力总成系统技术
7.4 中国新能源车电驱动总成系统技术发展展望
7.4.1 电驱动总成系统发展趋势
7.4.2 电驱动总成系统高集成化
7.4.3 双电机技术应用前景分析
7.4.4 电驱动总成系统路线图
八章 新能源汽车充电基础设施技术路线分析
8.1 中国充电基础设施发展概况
8.1.1 充换电设施产业链
8.1.2 充电桩主要产品类型
8.1.3 充电桩成本结构分析
8.1.4 充换电设施相关政策
8.1.5 充换电设施商业模式
8.2 中国充换电基础设施市场运行状况
8.2.1 各类充电桩保有量
8.2.2 新能源车充电桩配比
8.2.3 充换电设施竞争格局
8.2.4 区域充电设施发展
8.2.5 换电设施建设情况
8.3 中国充换电基础设施相关技术发展现状
8.3.1 充换电技术对比分析
8.3.2 充电技术主要类型
8.3.3 充电桩技术类型占比
8.3.4 充电产品技术发展状况
8.3.5 充电系统专利创新主体
8.3.6 充换电技术发展及应用
8.3.7 大功率充电技术发展
8.3.8 充电桩互联网互通状况
8.4 新能源汽车充电基础设施技术发展展望
8.4.1 充电技术发展方向分析
8.4.2 无线充电技术应用前景
8.4.3 高压快充技术发展展望
8.4.4 充电基础设施技术路线图
九章 汽车轻量化技术路线分析
9.1 汽车轻量化行业发展概况
9.1.1 新能源汽车质量分布
9.1.2 汽车轻量化发展意义
9.1.3 新能源车轻量化可行性
9.1.4 汽车轻量化相关政策
9.1.5 汽车轻量化与成本的关系
9.1.6 上市公司布局汽车轻量化
9.1.7 新能源汽车轻量化发展建议
9.2 汽车轻量化设计
9.2.1 汽车轻量化评判指标
9.2.2 汽车轻量化设计理念
9.2.3 汽车轻量化设计方法
9.2.4 汽车轻量化结构优化
9.2.5 车身轻量化结构设计
9.2.6 车身轻量化平台设计
9.3 汽车轻量化材料
9.3.1 汽车轻量化材料种类
9.3.2 轻量化材料发展现状
9.3.3 轻量化镁铝合金应用专利
9.3.4 汽车轻量化铝合金应用
9.3.5 汽车轻量化镁合金应用
9.3.6 轻量化纤维复合材料应用
9.3.7 轻量化新材料应用问题
9.3.8 轻量化新材料应用策略
9.4 汽车轻量化工艺
9.4.1 汽车轻量化制造工艺
9.4.2 激光焊接技术制造工艺
9.4.3 热成型技术制造工艺
9.4.4 一体压铸制造工艺
9.4.5 铝合金压铸件制造工艺
9.5 汽车轻量化技术发展现状
9.5.1 汽车轻量化技术发展现状
9.5.2 汽车轻量化专利申请情况
9.5.3 新能源汽车轻量化关键技术
9.5.4 燃料电池汽车轻量化技术
9.5.5 汽车底盘轻量化技术发展
9.5.6 汽车车身轻量化技术发展
9.5.7 三电系统轻量化技术发展
9.5.8 动力电池轻量化技术路线
9.5.9 企业汽车轻量化技术
9.5.10 一体化压铸技术竞争格局
9.6 汽车轻量化技术发展展望
9.6.1 汽车轻量化技术发展前景
9.6.2 新能源汽车重量发展趋势
9.6.3 车身系统轻量化发展趋势
9.6.4 底盘系统轻量化技术路径
9.6.5 三电系统轻量化技术路径
9.6.6 汽车轻量化技术路线图
十章 汽车智能制造与关键装备技术路线分析
10.1 汽车智能制造机电一体化技术应用分析
10.1.1 智能制造机电一体化应用价值
10.1.2 智能制造机电一体化技术特征
10.1.3 智能制造机电一体化技术应用
10.1.4 智能制造机电一体化应用案例
10.1.5 智能制造机电一体化技术方向
10.2 汽车智能制造信息化集成系统分析
10.2.1 汽车智能制造集成路径分析
10.2.2 汽车智能制造基础集成技术
10.2.3 汽车智能制造中级集成技术
10.2.4 汽车智能制造集成技术
10.3 新能源汽车智能制造技术推广
10.3.1 新能源汽车自身的智能化
10.3.2 新能源汽车产品的智能化
10.3.3 新能源汽车使用的智能化
10.3.4 新能源汽车智能制造技术
10.3.5 企业布局智能制造技术
10.4 机器人在汽车智能制造中的应用
10.4.1 智能制造机器人应用方向
10.4.2 智能制造机器人应用方式
10.4.3 智能制造机器系统应用
10.4.4 智能制造机器人应用前景
10.4.5 智能制造机器人发展趋势
10.5 智能制造与关键装备技术路线图

图表目录
图表1 汽车产业价值链后移
图表2 汽车产业价值链微笑曲线及利润结构变化
图表3 2001-2021年中国汽车销量及增长率
图表4 2006-2021年乘用车销量及增长率
图表5 2006-2021年商用车销量及增长率
图表6 汽车行业节能减排路径对比
图表7 2018-2021年中国汽车专利公开量及发明授权量
图表8 2021年中国汽车专利技术构成
图表9 2022年中国汽车专利技术构成
图表10 2021年中国汽车专利公开量按自主整车集团TOP20
图表11 2021年中国汽车发明专利公开量按自主整车集团TOP20
图表12 2021年中国汽车专利授权量按自主整车集团TOP20
图表13 2021年中国汽车发明专利授权量按自主整车集团TOP20
图表14 2022年中国汽车发明专利公开量按自主整车集团0
图表15 2022年中国汽车发明专利授权量按自主整车集团0
图表16 2022年中国汽车专利公开量按自主整车集团0
图表17 2021年中国汽车专利公开量创新主体TOP20
图表18 2021年中国汽车发明专利公开量创新主体TOP20
图表19 2021年中国汽车发明专利授权量创新主体TOP20
图表20 2022年中国汽车发明专利公开量按创新主体0
图表21 2022年中国汽车发明专利授权量按创新主体0
图表22 2021年中国汽车发动机领域专利公开量创新主体TOP20
图表23 2014-2020年我国乘用车企业平均燃油消耗量及达标情况对比
图表24 2016-2020年中国汽油乘用车节能技术搭载率
图表25 2016-2020年中国乘用车变速器技术搭载率
图表26 2016-2020年中国混合动力乘用车产量及占比
网站地图

相关推荐产品

留言板

  • 节能与新能源汽车技术
  • 价格商品详情商品参数其它
  • 提交留言即代表同意更多商家联系我
北京诺拓信息咨询有限公司为你提供的“中国节能与新能源汽车技术路线深度分析报告”详细介绍,包括节能与新能源汽车技术价格、型号、图片、厂家等信息。如有需要,请拨打电话:15210322745。不是你想要的产品?点击发布采购需求,让供应商主动联系你。
“中国节能与新能源汽车技术路线深度分析报告”信息由发布人自行提供,其真实性、合法性由发布人负责。交易汇款需谨慎,请注意调查核实。