关键词 |
普陀仪器校准,上海仪器校准,山西仪器校准,江苏仪器校准 |
面向地区 |
全国 |
、设备简介
PE EnVision 2105 多标记微孔板检测系统,主要用于在微孔板上进行光吸收、化学发光、荧光、时间分辨荧光、AlphaScreen以及荧光偏振等所有非放射性标记技术检测,具备的灵敏度、稳定性、和检测速度。
、设备参数与优势
EnVision多标记微孔板检测仪是目前检测速度快的高通量检测仪之一,所有检测技术都是模块化设计,用户可根据需要自由选取适合的检测模块,如以后有新的应用需求和通量要求,可以在用户实验室进行现场升级。作为行业的产品,在光路设计和附件配置方面均有到之处,为用户提供更灵敏、更快速、更灵活的检测体验。
1. 标记物特异的滤光片/二向色镜模块
EnVision多标记检测仪采用滤光片/二向色镜模块光路,其优势是把激发光和发射光完全分离开,避免了检测时的信号干扰,检测的准确性。所有滤光片/二向色镜均配备条形码,软件可自动识别,避免了手动选取光学元件时出错的可能性。
2. 四光栅检测光路
激发和发射均采用双光栅技术,在检测灵敏度的同时大大降低背景信号,可进行所用光吸收和荧光检测。具有全波长扫描功能,可确定待测物质的吸收峰值或荧光激发及发射峰值;具有很大的检测灵活性。
EnVision的滤光片/二向色镜与四光栅混合光路能大限度的兼顾检测灵敏度和灵活性,并提供快的速度和高通量。
3. 低背景的双检测器
EnVision的顶部检测光路采用全透镜模式,不借助光导器或是光纤束,检测速度更快、灵敏度更高。两个温度恒定的红敏光电倍增管(PMT)检测器满足FRET、LANCE、BRET、双报告基因等双发射同时检测分析的要求。
4. 超敏感化学发光
采用的检测器更靠近样品,立的光路设计有效避免相邻样本在检测时的交叉干扰,仅需更少的细胞就能获得比标准化学发光更高的灵敏度,使原代细胞、干细胞或难转染细胞的检测也不再困难。
5. 温度控制
温度控制覆盖整板区域,其范围是室温+2℃至50℃,并且在微孔板顶部有一加热部件,可有效防止冷凝问题。另外有针对AlphaScreen检测的温控模块,AlphaScreen检测过程的稳定性。
6. AlphaScreen
采用680nm激光源,立光路,立的PMT检测器,激发孔的同时检测后一孔,大大提高读板速度,实现高通量检测。
、设备应用
蛋白/核酸定量检测
1. 蛋白质定量
Lowrry法——蛋白质中含有酚基的酪氨酸,可与酚试剂中的磷钼钨酸作用产生蓝色化合物,颜色深浅与蛋白含量成正比,在650nm处检测吸光值,根据标准曲线计算样品浓度。
Bradford法——蛋白质与染料考马斯亮蓝G-250结合,在一定的线性范围内,反应液595nm处吸光度的变化量与反应蛋白量成正比,测定595nm处吸光度的增加即可进行蛋白定量。
BCA法——BCA(bicinchonininc acid)与二价铜离子的硫酸铜等其他试剂组成的试剂,混合一起即成为苹果绿,即BCA工作试剂。在碱性条件下,BCA与蛋白质结合时,蛋白质将Cu2+还原为Cu+,一个Cu+螯合二个BCA分子,工作试剂由原来的苹果绿形成紫色复合物,在562nm处检测,大光吸收强度与蛋白质浓度成正比。
2. 核酸定量
PicoGreen染料能特异的与双链DNA(dsDNA)结合,OliGreen能特异的结合寡核苷酸(ssDNA);双链λDNA或核苷酸溶于10 mM Tris-HCl(1 mM EDTA,pH 7.5)缓冲液,分别加入荧光染料,在激发光485nm、发射光530nm条件下检测荧光信号,核酸浓度和荧光强度成正比。
代谢研究
包括NADH检测、碱性磷酸酶、蛋白酶活性、双报告基因检测、细胞色素P450基因表达等。
1. 碱性磷酸酶检测
碱性磷酸酶(alkaline phosphatase)广泛分布于机体各脏器器官中,通过水解磷酸单酯将底物分子上的磷酸基团去除,并生成磷酸根离子和自由的羟基,参与各种生化反应。BBTP是一种非荧光物质,当碱性磷酸酶去除其磷酸基团,得到的产物BBT可发出很强的荧光信号;因此,BBTP可作为底物检测碱性磷酸酶活性。检测灵敏度可达0.5 pg/孔(3 amol/孔)。
2. 双报告基因检测
报告基因是用来检测药物作用后细胞内相关蛋白表达水平或转录活性的变化的方法。双报告基因实验系统中,报告基因表达活力的相对改变与偶联调控启动子转录活力的改变相关,偶联到组成型启动子的第二个报告基因,提供转录活力的内对照, 使测试不被实验条件变化所干扰。本实验采用萤火虫荧光素酶,结合β-半乳糖苷酶(β-Gal)的双报告基因系统。先在微孔板中加入20µl样本溶液,再加入50µl荧光素试剂和50µl ATP,用检测仪检测1s,读取化学发光信号。然后在微孔板中加入100µl β-Gal底物,孵育15min后,于570nm检测吸光度。化学发光信号值与荧光素酶活性成正比,同时β-Gal变化趋势应与荧光素酶一致。
细胞周期、细胞毒性、细胞凋亡方面的研究
包括细胞活力、氧应激反应、细胞粘连、钙离子检测、CYP介导的药物代谢、ATP检测、蛋白质羟基化、Caspase-3检测等。
1. 细胞活力检测——MTT法
活细胞线粒体中的琥珀酸脱氢酶能使外源性MTT还原为水不溶性的蓝紫色结晶甲瓒(Formazan)并沉积在细胞中,而死细胞无此功能。二甲基亚砜(DMSO)能溶解细胞中的甲瓒,用酶联检测仪在490nm波长处测定其光吸收值,可间接反映活细胞数量。在一定细胞数范围内,MTT结晶形成的量与细胞数成正比。该方法已广泛用于一些生物活性因子的活性检测、大规模的抗肿瘤药物筛选、细胞毒性试验以及肿瘤放射敏感性测定等。
2. CYP介导的药物代谢
细胞色素P450(CYP)是药物代谢过程中的关键酶,药物先导分子能否被CYP酶代谢、哪种CYP参与代谢以及先导分子是否会抑制CYP的形成,这些问题对于药物ADME筛选至关重要。实验通过荧光检测快速筛选能抑制CYP2A5形成的先导分子;从小鼠肝脏微粒体获取有活性的CYP2A5,香豆素作为底物能特异的被CYP2A5代谢。反应开始前在微孔板中加入NADPH,37℃孵育10分钟,以60µl 10%TCA终止反应,再加入140µl甘氨酸-NaOH溶液(pH 10.4)增强荧光信号,在355nm激发光和460nm发射光条件下检测代谢产物7-OH-香豆素的含量。先导分子对CYP2A5活性抑制作用越强,则检测到的荧光信号越弱。
3. ATP检测
三磷酸腺苷(ATP)是活细胞的能量储存单元,在细胞中的含量比较稳定,因此ATP的数量与活细胞数量有紧密的相关性。ATP检测常用于细胞增殖、细胞毒性和细胞粘附研究。实验时,在微孔板中加入25µl样本和25µl细胞裂解液,应用分液器每孔加入50µl荧光素酶试剂,延迟1s,检测10s;ATP浓度与化学发光信号成正比,由此推算细胞活性。
4. Caspase-3检测
凋亡是在不产生应答反应的情况下,多细胞生物体清除损伤细胞的一种方式。半胱氨酸酶被称为Caspase,在细胞凋亡初期扮演着重要角色,药物有可能激活或抑制Caspase的产生。因此,在药物研发和癌症研究中,Caspase及其调控机制备受瞩目。PerkinElmer公司开发了一种LANCE方法检测Caspase-3的活性;其原理是,在Caspase-3的四肽底物一端标记Eu,另一端偶联能淬灭Eu荧光的基团QSY™7,当样本表现Caspase-3活性时,四肽底物上淬灭基团被切除,游离的Eu激发后发出荧光,通过荧光强度检测,可计算样本中Caspase-3的含量。此方法无需洗板,快速、灵敏、高信噪比,稳定性、重复性好。
信号通路、GPCR研究
TR-FRET/LANCE检测GPCR信号通路第二信使cAMP:标记Eu的cAMP与携带ULight的抗体结合形成共振能量转移对,当内源性的cAMP释放后可以竞争结合其抗体,从而破坏荧光信号的传递,通过检测665/615信号的改变,检测内源cAMP的含量。LANCE检测方法与传统ELISA方法相比,均相免洗、操作步骤简单、具有更高的检测灵敏度和信噪比。
1、确定需要校准的设备
实验室的设备并非都需要校准, 应根据设备在测量过程中的位置和作用来评估设备对结果有效性和计量校准性的影响, 合理地确定设备是否需要校准。对需要校准的设备, 应列入校准方案。
2 、校准方案的制定
在实施具体的合格评定过程中, CNAS-CL01-G001:2018《CNAS-CL01〈检测和校准实验室能力认可准则〉应用要求》6.4.7款规定, “对需要校准的设备, 实验室应建立校准方案, 方案中应包括该设备校准的参数、范围、不确定度和校准周期等”, 因此, 在制定校准方案时应将相关内容明确, 以便在校准时提出明确的、由针对性的要求, 同时也为校准后的确认提供便利。
(1)校准参数对于单参数设备, 校准参数就要按照设备的功能予以确定;对于多参数设备, 应根据实际使用情况以及相应的技术标准要求, 确定需校准参数, 确保所使用参数得到校准。
(2)校准范围实验室应根据认可能力附表中对应项目的测量范围, 来确定设备需要校准的范围, 原则是设备的校准范围应覆盖开对外开展工作的范围, 只有这样才能确保测量结果的计量校准性。
(3)测量不确定度设备的测量不确定度 (或准确度等级、大允许误差) 应满足技术标准 (如检定规程或校准规范或国家标准等) 和国家校准等级图的要求, 并与所开展的工作相适应, 不能出现实验室设备的测量不确定度劣于被测设备的测量不确定度的情况。
(4)校准周期设备的校准应根据对应技术方法 (如检定规程或校准规范) 的规定确定校准周期, 也可以根据使用的频次缩短或延长校准周期。当需要延长校准周期时, 可根据JJF1139-2005 《计量器具检定周期确定原则和方法》规定的来确定校准周期, 并保留相应的验证材料。
3、校准机构符合性评价
设备管理人员应针对每台需要校准的设备填写《设备校准机构能力符合性检查表》, 确保所选的校准机构能按照校准方案的要求完成设备的校准工作。同时, 由于校准机构为实验室提供校准服务, 属于外部供应商, 因此, 设备管理人员还应针对校准机构填写《供应商评价表》, 并对其提供的服务进行监控。
校准中
1、校准日期的确定
认可准则在7.8.2.1款“每份报告应至少的信息”中要求包括“物品的接收日期”、“实施实验室活动的日期”以及“报告的发布日期”, 校准机构完成对设备的校准后, 设备按照规定的条件存储, 其校准状态相对得到了固定,一般不会发生变化, 因此可以理解为设备自“实施实验室活动的日期”后开始获得了新的校准状态。在确定校准日期时应以校准证书中“实施实验室活动的日期”为准。
2 、设备运输、存储
为使设备安全运输至校准机构, 实验室应根据设备的特点, 制定相应的措施, 防止设备由于转移过程处置不当导致技术性能受损情况的发生。对于需要在特殊环境下存储的设备, 还应将存储条件告知校准机构, 好是在合同中注明。
校准后
1、 校准后的功能验证
CNAS-CL01-G001:2018《CNAS-CL01〈检测和校准实验室能力认可准则〉应用要求》6.4.4款规定“因校准或维修等原因又返回实验室的设备, 在返回后实验室也应对其进行验证。”, 因此, 设备由校准机构回到实验室后, 应有设备管理人员验证其功能、状态是否保持正常, 只有得出正常的结论后, 设备方能继续使用。
2、 结果的确认
设备管理人员应对照校准方案的要求核查校准结果是否满足要求,对于满足要求的设备可以继续使用。对于不满足要求的设备, 应分析原因, 启动设备故障后的追踪程序和不符合工作控制程序, 对之前当出具的结果进行核查。同时, 隔离设备以防误用, 并对设备进行维修。所有的记录均应予以保存。
3 、设备的使用
在确认设备功能正常、技术性能得到持续保持的情况下, 设备可以继续进行使用, 设备管理人员应将校准证书和确认记录归档, 并为设备更换有效的校准标识后, 校准工作基本完成。
可燃气体检测仪是对单一或多种可燃气体浓度响应的探测器。可燃气体检测仪有催化型、红外光学型两种类型。催化型可燃气体检测仪是利用难熔金属铂丝加热后的电阻变化来测定可燃气体浓度。当可燃气体进入探测器时,在铂丝表面引起氧化反应(无焰燃烧),其产生的热量使铂丝的温度升高,而铂丝的电阻率便发生变化。
不管是哪种气体检测仪,都会带有报警功能,主要是为了当仪器检测到环境中目标气体浓度达到一定浓度时,气体检测仪能发出警报提醒。而一台仪器的检测结果精度则是发出正确警报的重要条件,气体检测仪标定则是这一条件能达成的重要,那可燃气体检测仪如何校准呢?
不管是加拿大BW、美国华瑞、还是英思科的可燃气体检测仪正常校正时间都不能超过一年,从产品出厂到定期维护周期为一年。主要根据其中气体监测探头使用时效为准,校正是为了避免监测探头灵敏度的下降, 若气体浓度升高时气体检测仪未能及时监测到气体浓度情况,则为气体检测仪灵敏度下降或仪器校准出现问题。另外若现场气体混乱气体仪器长期处于高负荷运作情况下都会出现灵敏度下降、检测精度出现偏差。根据Bosean检修的数据分析每年气体检测仪的衰减率为15-30% ,衰减已经严重影响到气体检测仪的检测结果,所以定期校正与维护方能确保仪器的正常使用。气体检测仪的标定是指将仪器放在相应已知浓度的测试气体中,对比气体检测仪检测结果和气体浓度来得知该气体检测仪的准确度。比如,正己烷在1.1%VOL就会燃烧爆炸,而在己烷检测仪上设置10%警报时,己烷浓度达到0.1%的时候就该报警,对于催化燃烧传感器,这个浓度是相当低的。而有毒气体的报警值就比可燃气体低更多,拿CL2来说,其阀值警报值仅仅为0.5ppm。
气瓶连接
1.将标准皮管连接至气瓶上的0.5升/分钟流量阀。
2.将校准皮管连接至校准盖。
3.将校准盖连接至检测仪。
4.输入气体。确认声光报警已启动。
5.关闭流量阀,并从检测上拆除标准盖。注:检测仪将暂时保持报警状态,直到传感器中的气体被清除。
6.将皮管从标准盖和流量阀上断开
各类可燃气体检测仪的校正是检测仪器灵敏度和恢复仪器准确性的重要途径,同时,通过测试和校正我们还能判断该气体检测仪的传感器是否已经失效。因此,定期进行仪器标定是非常有必要的。
全国仪器校准热销信息