关键词 |
甘肃仪器校准,定西仪器校准,宁河仪器校准,云南仪器校准 |
面向地区 |
全国 |
吴健雄是世界的核物理学家,“东方居里夫人”,在β衰变研究领域具有世界性的贡献。她1944年参加“曼哈顿计划”,1958当选为美国科学院院士,1975年任美国物理学会任女性会长。
吴健雄在实验核物理方面的研究工作涉及面广。她尤其注意实验技术的不断改进,曾对多种核辐射测量仪器的开发、改进做出了贡献,例如薄窗盖革计数器、某些塑料闪烁探测器。
吴建雄为大家所熟知的是她验证了李政道、杨振宁提出的宇称不守恒理论。1956年李政道、杨振宁提出在β衰变过程中宇称可能不守恒之后,吴健雄设计了实验来证明这一的理论。实验要求原子的振动、转动降到低而且排齐,她需要了一个“冰屋”来使核不动,这“冰屋”的温度低到温度0.01K,还要施加10 T 强磁场。当时任何大学实验室都不能满足如此苛刻的实验要求,她联系了拥有全美高水平实验室的美国国家标准局(NBS,美国标准技术院的前身),希望利用该局的国家计量绝热去磁装置来做她的“冰屋”,结果 得到热烈欢迎,并邀请她到NBS来做实验。
在NBS的大力协助下,吴健雄实现了把钴 -60 原子核自旋方向几乎都控制在同一方向,而观察钴 -60 原子核β衰变放出的电子的出射方向。他们发现绝大多数电子的出射方向都和钴 -60 原子核的自旋方向相反。就是说,钴 -60 原子核的自旋方向和它的β衰变的电子出射方向形成左手螺旋,而不形成右手螺旋。但如果宇称守恒,左右手螺旋两种机会相等。因此,这个实验结果证实了弱相互作用中的宇称不守恒。在整个物理学界产生了极为深远的影响。
电器产品的绝缘性能是评价其绝缘好坏的重要标志之一,它通过绝缘电阻反映出来。我们测定的产品绝缘电阻,是指带电部分与外露非带电金属部分(外壳)之间的绝缘电阻。在家用电器产品标准中,通常只规定热态绝缘电阻,而不规定常态条件下的绝缘电阻值,常态条件下的绝缘电阻值由企业标准中自行制定。如果常态绝缘电阻值低,说明绝缘结构中可能存在某种隐患或受损。如电机绕组对外壳的绝缘电阻低,可能是在嵌线时绕组的均线槽绝缘受到损伤所致。在使用电器时,由于突然上电或切断电源或其它缘故,电路产生过电压,在绝缘受损处产生击穿,造成对人身的安全或威胁。
绝缘电阻测量仪通常分为直接作用模拟指示的绝缘电阻表和电子式绝缘电阻表。随着技术的发展,电子式绝缘电阻表逐步取代直接作用模拟指示的绝缘电阻表。电子式绝缘电阻表按显示的不同分为模拟显示和数字显示两种类型,计量单位为MΩ或GΩ,主要用于测量设备和材料的绝缘电阻。
直接作用模拟指示的绝缘电阻表的检定规程为JJG 622-1997《绝缘电阻表(兆欧表)检定规程》,其规定直接作用模拟指示的绝缘电阻表的检定周期不得超过2年。电子式绝缘电阻表的检定规程为JJG 1005-2005《电子式绝缘电阻表检定规程》,其规定电子式绝缘电阻表的检定周期不得超过1年。(来源:2016年全国计量科普知识库)
甲烷,俗称瓦斯。化学式CH4,是简单的有机物,在标准状态下是一种无色无味气体。它是天然气、沼气、油田气及煤矿坑道内气体的主要组成部分。甲烷有毒吗?甲烷对人基本,但浓度过高时,空气中氧含量明显降低,会使人窒息。当空气中甲烷达到25%~30%时,会引起头痛、头晕、乏力、呼吸和心跳加速等,含量更高的话,会导致窒息死亡。甲烷会爆炸吗?甲烷是一种易燃气体,它与空气混合能形成爆炸性混合物,达到一定温度或有明火时,会有燃烧爆炸的危险。
甲烷检测仪是检测甲烷气体含量的仪器,也称瓦斯计。能够在工业环境下对甲烷气体进行实时检测并发出声光报警。它适用于管道寻漏、漏点定位、气体浓度监测,能有效人身安全。甲烷气体检测仪主要由传感器、显示器或气室和光路组成。
甲烷检测仪按采样方式不同分为泵吸式和扩散式。泵吸式仪器是通过泵将待测气体吸入到传感器内进行检测。扩散式仪器是气体分子自由扩散,传感器在有效范围内检测气体浓度。甲烷检测仪按检测原理不同分为催化燃烧式、红外吸收式和光干涉式。催化燃烧式是利用催化燃烧的热效应原理,由检测元件和补偿元件配对构成测量电桥,在一定温度条件下,气体在检测元件载体表面及催化剂的作用下发生无焰燃烧,载体温度升高,通过它内部的铂丝电阻也相应升高,从而使平衡电桥失去平衡,输出一个与气体浓度成正比的电信号。通过测量铂丝的电阻变化的大小,就知道气体的浓度。红外吸收式是利用气体浓度与吸收强度关系来确定气体的浓度。光干涉式是通过测量气体折射率的变化来确定气体的浓度。(来源:2016年全国计量科普知识库)
输液泵、注射泵广泛应用于医疗机构内科、外科、儿科、心血管科、急诊科和手术室,尤其适用于ICU和CCU病房的输液治疗。而使用输液泵、注射泵的患者大多处于病情多变的高危期,输入的常用药物包括血管活性药物、强心药物、抗心律失常药、电解质溶液以及化疗药物等,稍有不慎都将对患者的病情造成不良影响,后果不堪设想。临床上应根据药物和患者情况不同配以适当的输液速度。输液过快,可能会导致中毒,严重时会导致水肿和心力衰竭;输液过慢则可能发生药量不够或无谓地延长输液时间,使治疗受影响并给患者和护理工作增加不必要的负担。癌症患者的化疗和病危患者的抢救治疗需要使药物以恒定的速度灌注,通过调节输入的速度和时间将化疗药物均匀持续地注入,既达到化疗的佳效果,又能大限度地降低化疗药物的不良反应。因此输液泵的质量控制也就至关重要,而输液泵的计量性能的准确性和溯源性是质控的关键,也是医学计量的核心工作。
由此可见,输液泵、注射泵的流量和压力等量值准确与否直接关乎病人的生命安全和治疗效果,所以对输液泵、注射泵定期进行计量性能指标校准,确保量值的准确可靠,避免在用的输液泵、注射泵因计量性能不准确引起医疗事故。输液泵主要计量性能指标校准主要是:1.流量值的校准,一般采用称重法和比较法;2.压力值(阻塞报警阈值)的校准。(来源:2016年全国计量科普知识库)
计算天体距离困难的就是找一个合适的参照物。天体的距离和大小是难以测量的,但是只要给定一个出发点,它在地球上的各种表现是可以量化的。
下面来介绍聪明的古希腊人是如何计算的。有一点需要说明,当时的古希腊人已经计算出地球的周长和直径。以此为基础,古希腊人进行了一个巧妙的几何计算。
我们知道,在太阳底下的物体都会有一个阴影,如果一个圆形的物体,就会有一个圆形的阴影,随着物体不断升高,阴影逐渐形成一个黑点,这个黑点到物体的距离恰好是物体直径的108倍,也就是说物体能形成自己直径108倍长的阴影区,地球也是如此。
在月蚀的时候,我们都知道月球是被地球挡住了太阳光,导致我们无法见到反光的月球,也就是说,无论月球大小,月蚀的时候都要通过这个地球造成的阴影区。而根据希腊人的估算,月球通过的这段阴影区长度大概是月球直径的2.5倍。
那到底是一个大的、遥远的月球,还是一个小的、近的月球呢?这可不好判断了,其实月球自己本身也是一个能够遮挡太阳光的球体,也就是说,和地球一样,它也会产生自己的阴影区。而这个阴影区在地球上终止,而且阴影末端的角度和地球相同。
如上图,我们可以得到三个相似三角形,大的那个底边为地球直径(8,000英里),高是108倍地球直径(864,000英里);小的那个底边是月球直径,高是地月距离;中等大小的那个底边长是2.5倍月球直径,由于三角形相似性,高便是2.5倍地月距离。再加上一个地月距离,大的那个三角形的高便是3.5倍的地月距离。那么我们就可以计算,地球和月球距离=864,000/3.5=247,000英里,这个结果与如今我们的测量值239,000英里相差并不太大,又一次证明了古希腊人的智慧。(来源: 实验核天体物理)
被中香炉从严格意义上讲不属于度量衡范畴。它是我国古代香薰被褥的球形小炉,其早的记载见于西汉司马相如的《美人赋》。西汉时刘歆的《西京杂记》中有这样的记载,“长安巧工丁缓者,为常满灯......又作卧褥香炉,一名被中香炉。本出房风,共法后绝,至缓始复为之。为机环转运四周,而炉体常平,可置之被褥,故以为名。”“被中香炉”然是古人的生活用品,但其构造却揭示了物理学、计量学的一个重要原理,即古人为防止香炉中盛香料的香盂随香炉的晃动而倾覆,便设计了“内持平环”和“外持平环”,将悬挂香盂的内持平环悬挂在外持平环上,使两个持平环的轴孔正好垂直,轴心线的夹角正好为90?。由此内持平环就能避免香盂前后方向倾斜;外持平环则能防止香盂内持平环在轴向方向倾斜。由此香盂随重心作用始终能保持水平,无论香炉怎么转动,香盂斗不至倾覆。被中香炉的这种结构设计与现在陀螺仪中“万向支架”的原理非常相似。(来源:浙江省计量科学研究院)
全国仪器校准热销信息