关键词 |
三门峡金属锰硅锰合金检测机构,株洲成分分析硅锰合金分析报告,株洲成分分析硅锰合金检测报告,九江成分含量硅锰合金分析报告 |
面向地区 |
全国 |
所用的锰矿含锰越高,各项指标越好,图1为锰矿品位对硅锰合金技术经济指标的影响。锰矿中二氧化硅含量通常不受限制。采用含二氧化硅较高的锰矿(30~40%SiO2)来冶炼硅锰合金在技术上是允许的,在资源利用上是合理的。锰矿中的杂质P2O5要低,P2O5使合金中磷含量升高。锰矿粒度一般为10~80mm,小于10mm不超过总量的10%。对于硅石的要求,SiO2≥97%,P2O5<0.02,粒度10~40mm,不带泥土及杂物。对于焦炭的要求,固定碳≥84%,灰分≤14%,焦炭粒度,一般中小电炉使用3~13mm,大电炉使用5~25mm。对于石灰的要求与碳素锰铁对石灰的要求相同。为了改善硅的还原,炉料中有足够的SiO2使在酸性渣中进行冶炼,渣中SiO2过高,会使排渣困难锰的氧化物不稳定,受热后容易分解和被CO还原成的氧化物MnO,在1373K~1473K的温度区间,锰的氧化物已经分解或还原成MnO。MnO较稳定,只能用碳直接还原,由于炉料中SiO2较高,MnO在没开始还原时就与它反应成硅酸盐,富锰渣中的硅锰也是硅酸盐的形式存在,因此从MnO中还原锰的反应,实际上是液态炉渣的硅酸盐中进行还原的。由于锰与碳组成稳定的化合物Mn3C,用碳还原MnO得到的不是纯锰,而是锰的化合物Mn3C。炉料中的氧化铁比氧化锰容易还原,还原出来的铁与锰组成共熔体,大大改善了MnO的还原条件。由于硅与锰生成比Mn3C更稳定地化合物MnSi,当硅遇到了Mn3C时,Mn3C中的碳被排挤出来,使合金含碳量下降。被还原出来的硅越多,碳化物破坏得越,合金的含碳量就越低。用碳还原炉料中的硅和锰生产硅锰合金,由于还原出来的硅与锰结合生成MnSi,从而改善了还原条件。合金中的含硅量越低,SiO2的开始还原温度越低,例如,冶炼硅锰20时,SiO2开始还原温度为1763K,冶炼硅锰14时为1748K。生产硅锰合金的工艺与生产碳素锰铁基本相同,但在炉况的掌握上比生产碳素锰铁要难些。为此在操作上更要求做到精心细致,正确的判断炉况和及时处理。正常炉况的标志是电极插入深度合适,炉料均匀下沉,炉口冒火均匀,成分稳定和各项技术经济指标良好。准确的配料比是得到正常炉况的关键。配料比中的主要问题是配碳量问题。当炉料中还原剂过多时,炉料导电性增强,电流上涨电极上抬,坩埚缩小,疵火塌料现象增多,炉口的外观和炼硅铁时的还原剂过多时有些相同,由于炉料中有过多的还原剂,二氧化硅还原较多因而合金中硅高。若还原剂过剩量太大,电极上抬很严重,炉底温度低,合金中硅含量反而下降。当炉料中还原剂不足时,电极下插深,炉口火焰低,发暗,由于还原剂不足,渣中二氧化硅高,渣发粘,出铁时铁渣不分,合金中硅低碳高。配碳量是根据公式计算出来的,但要把炉上的一些实际情况考虑进去。例如炉渣碱度大渣稀,出铁带走的生料多,配料量可以大些,又如旧的出铁口炉眼大,出铁时带走的焦炭多,配碳量也要大一些。炉渣的碱度对硅锰合金的冶炼也有很大的影响。碱度过高,成渣温度大大下降,炉内温度提不高,加之CaO与SiO2结合成硅酸盐,这些都使SiO2的还原困难,合金含硅量上不去。此外,碱度过高,炉渣过稀,出铁时带走的生料多,出铁口也容易烧坏,炉眼也不好堵,因此碱度太高是不好的。碱度太低,渣发粘,排渣困难,排渣不,容易引起翻渣,碱度太低,电阻大,炉渣的导电性大大下降,常常给不满负荷,因而炉温低,坩埚缩小,化料速度慢,生产率低。由于炉温低和渣发粘,SiO2还原发生困难,合金中硅低碳高,渣中跑锰多。生产中可根据渣量和渣的流动性来判断炉渣碱度,正常冶炼时,每炉的渣量和铁量在一定范围内波动。若出渣过多,出铁较少,说明碱度高;若渣量少,流不出来,出铁口挂渣,说明碱度低。炉渣的流动性和碱度直接相关,渣稀,碱度就高、渣粘、碱度就低。二氧化硅是较难还原的氧化物,它的还原程度与还原剂的用量特别是与炉温有关。因此,冶炼硅含量较高的硅锰合金除适当增加还原剂的用量外,关键是怎样提高炉内的温度。我们知道,在连续冶炼法中,炉渣的熔点对炉温有很大的影响。在冶炼硅锰合金时,因为炉渣中的SiO2和MnO在1240℃会组成低熔点的共晶体,而从MnSiO3中还原得到含硅20%的开始还原温度为1490℃,因此冶炼高硅硅锰合金的主要困难也是炉温问题。锰矿的品位和块度对炉温是有影响的。锰矿含锰越高,渣量就少,炉温容易上去。锰矿块度大,透气性好,整个炉口冒火,料层均匀下沉。原料预热好,落入下部反应区时带入较多的热量,同时块度大,熔化很慢,成渣温度也高,这都有助于炉温的提高。提高合金的含硅量,还要有一个合适的炉渣成分。生产实践指出,当碱度(CaO/SiO2)在0.5~0.7之间,合金含硅量高。此外,炉渣中含有少量的(5~7%)MgO能大大改善炉渣的流动性,又利于炉温的提高,这都能促进SiO2的还原。电极工作端的长度对炉温是有直接影响的。9000~12500KVA的电炉冶炼硅锰合金时电极的正常埋入深度为1.2~1.4米,工作电压为130~145V;3000~6000KVA的电炉冶炼硅锰合金时电极的正常埋入深度为600~800mm。此外,如出铁口处炉壁变薄,出铁口炉眼太大造成出铁时淌生料严重,也都影响炉温的提高,从而影响合金中硅含量的提高。
金属锰为立方晶体,有α,β,γ和δ四种同素异性体,常温下以α锰稳定。金属锰的机械性能硬而脆,莫氏硬度为5~6,致密块状金属锰表面为银白色,粉状呈灰色。锰的相对原子量为54.9380±1。原子体积为7.39cm3/mol。金属锰的原子半径和室温下的密度,均随晶型不同而略有差别在大气压为101.325kPa时,锰的熔点为1260℃,沸点1900℃,汽化热为219.7kJ/mol。在0-25℃时,锰的电阻率为185μΩ·cm,在18℃锰的磁化率为9.9×10-6cm3/g。
锰属于第四周期的过渡元素,同Sc,Ti,V,Cr,Fe,Co,Ni相比尤其是与相邻的Cr和Fe相比,锰有一些特殊的物理化学特性。这些特性对认识锰的地球化学特征有重要意义。第四周期过渡元素的晶体结构有六方、立方、体心立方和面心立方等类型。例如,Sc,Ti和Co为六方型;V,Cr和Fe为体心立方型;Ni为面心立方型;惟锰为立方型。第四周期过渡元素的原子半径,总的趋势是从Sc到Ni随原子序数增加而依次减小,惟锰是例外。它的原子半径可达136.6pm(γ-Mn)比Cr(124.9pm)和Fe(124.1pm)的原子半径都大,破坏了递减规律。原子体积也有这种现象,锰的原子体积为7.39cm3/mol,它比Cr(7.23cm3/mol)和Fe(7.1cm3/mol)都大。第四周期过渡元素的氧化态,惟锰有高的+7氧化态。锰元素前的过渡元素(从Sc到Cr)高氧化态逐渐升高,从+3到+6;锰后的过渡元素(从Fe到Ni)高氧化态逐渐降低,从+6到+3。锰元素前过渡元素的氧化态升高,与3d轨道上价电子数增加有关。当3d轨道上的电子数达到5以上时(从Cr到Ni),3d轨道逐渐趋向稳定,高的氧化态逐渐不稳定,呈现强氧化性,所以锰元素后过渡元素的氧化态又逐渐降低。在第四周期过渡元素中,锰具有低的熔点与沸点。从Sc到Cr,熔点为1539~1890℃,沸点为2483~3380℃;从Fe到Ni,熔点为1453~1535℃,沸点为2732~3000℃.而锰的熔点只有1260℃,沸点只有2077℃.其熔化热和汽化热也较低。第四周期过渡元素的标准电极电势,基本上从Sc到Ni逐渐增大。这和它们的金属性逐渐减弱是一致的。惟锰的标准电极电势比铬还低,破坏了这种递增规律。这与失去两个4s电子后,形成更稳定的3d5构型有关。由此可见,锰在第四周期过渡元素中,有其特的物理化学特性。
锰在农业中的应用锰是植物正常生长不可缺少的微量元素之一,它参与光合作用和氮素的转化,参与许多酶的活动和氧化还原过程,能促进叶绿素的合成和碳水化合物的运转。当土壤中严重缺锰时,农作物出现枯黄,生长不良,产量下降。据中国科学院南京土壤研究所和江苏农业科学院的调查表明,我国缺锰土壤达亿亩以上,若以每年每亩施lkg锰肥计,我国农业需含锰肥料就达10万t之多。硫酸锰和一氧化锰都是的锰肥。除了用于肥料之外,锰在农业上还有许多其他的应用,如作杀菌剂(乙撑双二硫代氨基甲酸锰)、饲料添加剂等。
广东省工业分析检测中心现有高、中、初级技术和管理人员约100余人,其中教授有16人,工程师27人,硕博士30多人,具有中级职称以上科技人员占80%。拥有电子探针、透射电镜、X-射线衍射仪、X-射线荧光光谱仪、等离子质谱仪、等离子发射光谱仪、离子色谱仪、原子吸收光谱仪、大型光栅光谱仪、紫外可见分光光度计、氮氧测定仪、碳硫测定仪、光电直读光谱仪、扫描电镜、粒度分析仪、拉力试验机、疲劳试验机、摩擦磨损试验机、硬度计等300余台套,总资产约3800余万元。实验室面积约4000平方米。
近年来,广东省工业分析检测中心凭借研发优势和技术实力,在绿色节能与低碳环保相关工作中,承担了铝合金建筑隔热型材产品节能认证和铝合金型材低碳产品认证项目实施工作,完成并取得阶段性成果的节能降耗科研项目有9项,参与制订的节能与低碳相关的标准或技术文件共10项。该中心在节能工作组织协调、政策法规制定、重大技术推广、能源统计和计量管理、节能监督检查等方面做出了贡献,获得广东省科技进步三等奖一项、广州市科技进步二等奖一项。
全国硅锰合金热销信息