关键词 |
邛崃可燃气体报警器,成都可燃气体报警器,金平区可燃气体报警器,三角可燃气体报警器 |
面向地区 |
全国 |
世通仪器检测在全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,校准证书带标,出证书快,证书可加急,报价流程:发公司名称和仪器清单或者仪器图片量程-收到清单开始报价-价格合适预排时间上门检测-检测好1-5天出证书-寄回证书-转款。欢迎来电咨询:陈工
气体检测仪仪器可有效检测气体的浓度和类别,防止人误入毒气环境造成伤害。气体检测仪器是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪器。主要利用气体传感器来检测环境中存在的气体种类,气体传感器是用来检测气体的成份和含量的传感器。一般认为,气体传感器的定义是以检测目标为分类基础的。
安装和接线编辑步是将气体探测器安装在可能有气体泄漏的区域中,气体探测器安装牢固,且安装位置根据被测气体相对于空气比重大小决定,因被测气体比重小于空气,探测器应安装在距顶棚30~60cm处。用Φ8膨胀螺丝将探测器固定在墙壁上。
为了正确使用探测器并防止其故障的发生,请不要安装在以下位置:
a、直接受蒸汽、油烟影响的地方
b、给气口、换气扇、房门等风量流动大的地方
c、水汽、水滴多的地方(相对湿度:大于90%)
d、温度在-40℃以下或70℃以上的地方
第二步是接线:接线要采用高度屏蔽线防止电信号被干扰,将线摆好,打开顶盖。
1、气体探测器一般采用三线制传输,将电源正极标有(“VCC”的端子)、信号线(标有“SIG”的端子)、电源负极(标有“GND”的端子)分别对应接入通道模块标“4-20mAIN”的一组端子的“24V、mA和GND”,机壳地(电缆的屏蔽网)良好接地,接好线后,紧固好机壳。
2、启动:接线完毕,给探测器供电。刚启动后读数将从超量程到读数稳定,大约要15分钟左右。1、整机检查:平时应当定期检查探测器,它在清洁空气中信号电流为DC4mA
2、传感器维护:一般在安装使用半年到一年要进行重新检查标定,并由检测方出检测报告。
3、当气体探测器的传感器丧失灵敏度时需要更换,通过定期标定就会知道传感器是否失效,当标定值达不到标气值,要更换传感器。
世通仪器检测在全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,校准证书带标,出证书快,证书可加急,报价流程:发公司名称和仪器清单或者仪器图片量程-收到清单开始报价-价格合适预排时间上门检测-检测好1-5天出证书-寄回证书-转款。欢迎来电咨询:陈工
显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。 [1] 主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微镜是在1590年由荷兰的詹森所。现在的光学显微镜可把物体放大1600倍,分辨的小极限达波长的1/2,国内显微镜机械筒长度一般是160毫米。对显微镜研制,微生物学有贡献的人为列文虎克,荷兰籍人。显微镜是人类伟大的发明之一。在它发明出来之前,人类关于周围世界的观念局限在用肉眼,或者靠手持透镜帮助肉眼所看到的东西。
显微镜把一个全新的世界展现在人类的视野里,人们次看到了数以百计的“新的”微小动物和植物,以及从人体到植物纤维等各种东西的内部构造。显微镜还有助于科学家发现新物种,有助于医生治疗疾病。
早的显微镜是16世纪末期在荷兰制造出来的。是亚斯·詹森,荷兰眼镜商,或者另一位荷兰科学家汉斯·利珀希,他们用两片透镜制作了简易的显微镜,但并没有用这些仪器做过任何重要的观察。
后来有两个人开始在科学上使用显微镜。个是意大利科学家伽利略。他通过显微镜观察到一种昆虫后,次对它的复眼进行了描述。第二个是荷兰亚麻织品商人列文虎克(1632年-1723年),他自己学会了磨制透镜。他次描述了许多肉眼所看不见的微小植物和动物。1931年,恩斯特·鲁斯卡通过研制电子显微镜,使生物学发生了一场革命。这使得科学家能观察到像百万分之一毫米那样小的物体。1986年他被授予诺贝尔奖。
显微镜结构编辑 语音
简易显微镜结构图
简易显微镜结构图(3张)
光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜;载物台,镜臂,镜筒,镜座,聚光器,光阑组成。显微镜以显微原理进行分类可分为偏光显微镜、光学显微镜与电子显微镜和数码显微镜。
偏光显微镜
偏光显微镜
偏光显微镜
偏光显微镜(Polarizing microscope)是用于研究所谓透明与不透明各向异性材料的一种显微镜,在地质学等理工科中有重要应用。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可用,而利用偏光显微镜。反射偏光显微镜是利用光的偏振特性对具有双折射性物质进行研究鉴定的仪器, 可供广大用户做单偏光观察,正交偏光观察,锥光观察。
光学显微镜
通常皆由光学部分、照明部分和机械部分组成。无疑光学部分是为关键的,它由目镜和物镜组成。早于1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。光学显微镜的种类很多,主要有明视野显微镜(普通光学显微镜)、暗视野显微镜、荧光显微镜、相差显微镜、激光扫描共聚焦显微镜、偏光显微镜、微分干涉差显微镜、倒置显微镜。
电子显微镜
电子显微镜有与光学显微镜相似的基本结构特征,但它有着比光学显微镜高得多的对物体的放大及分辨本领,它将电子流作为一种新的光源,使物体成像。自1938年Ruska发明台透射电子显微镜至今,除了透射电镜本身的性能不断的提高外,还发展了其他多种类型的电镜。如扫描电镜、分析电镜、压电镜等。结合各种电镜样品制备技术,可对样品进行多方面的结构 或结构与功能关系的深入研究。显微镜被用来观察微小物体的图像。常用于生物、医药及微小粒子的观测。电子显微镜可把物体放大到200万倍。
台式显微镜,主要是指传统式的显微镜,是纯光学放大,其放大倍率较高,成像质量较好,但一般体积较大,不便于移动,多应用于实验室内,不便外出或现场检测。
便携式显微镜
一台的显微镜,及其配件.
一台的显微镜,及其配件.
便携式显微镜,主要是近几年发展出来的数码显微镜与视频显微镜系列的延伸。和传统光学放大不同,手持式显微镜都是数码放大,其一般追求便携,小巧而,便于携带;且有的手持式显微镜有自己的屏幕,可脱离电脑主机立成像,操作方便,还可集成一些数码功能,如支持拍照,录像,或图像对比,测量等功能。
数码液晶显微镜,早是由博宇公司研发生产的,该显微镜保留了光学显微镜的清晰,汇集了数码显微镜的强大拓展、视频显微镜的直观显示和便携式显微镜的简洁方便等优点。
扫描隧道显微镜
扫描隧道显微镜亦称为“扫描穿隧式显微镜”、“隧道扫描显微镜”,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德·宾宁(G.Binning)及海因里希·罗雷尔(H.Rohrer)在IBM位于瑞士苏黎世的苏黎世实验室发明,两位因此与恩斯特·鲁斯卡分享了1986年诺贝尔物理学奖。
它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。
STM使人类次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广泛的应用前景,被国际科学界公认为20世纪80年代世界科技成就之一。
发展历史
早在公元世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。
1590年,荷兰Z·Jansen(詹森)和意大利人的眼镜制造者已经造出类似显微镜的放大仪器。
1611年,Kepler(克卜勒):提议复合式显微镜的制作方式。
1665年,R·Hooke(罗伯特·胡克):「细胞」名词的由来便由胡克利用复合式显微镜观察软木的木栓组织上的微小气孔而得来的。
1674年,A·V·Leeuwenhoek(列文虎克):发现原生动物学的报导问世,并于九年后成为发现「细菌」存在的人。
1833年,Brown(布朗):在显微镜下观察紫罗兰,随后发表他对细胞核的详细论述。
1838年,Schlieden and Schwann(施莱登和施旺):皆提倡细胞学原理,其主旨即为「有核细胞是所有动植物的组织及功能之基本元素」。
1857年,Kolliker(寇利克):发现肌肉细胞中之线粒体。
1876年,Abbe(阿比):剖析影像在显微镜中成像时所产生的绕射作用,试图设计出理想的显微镜。
生物显微镜
生物显微镜
1879年,Flrmming(佛莱明):发现了当动物细胞在进行有丝分裂时,其染色体的活动是清晰可见的。
1881年,Retziue(芮祖):动物组织报告问世,此项发表在当世尚凌驾逾越。然而在20年后,却有以Cajal(卡嘉尔)为首的一群组织学家发展出显微镜染色观察法,此举为日后的显微解剖学立下了基础。
1882年,Koch(寇克):利用苯安染料将微生物组织进行染色,由此他发现了霍乱及结核杆菌。往后20年间,其它的细菌学家,像是Klebs 和 Pasteur(克莱柏和帕斯特)则是藉由显微镜下检视染色药品而证实许多疾病的病因。
1886年,Zeiss(蔡司):打破一般可见光理论上的极限,他的发明--阿比式及其它一系列的镜头为显微学者另辟一新的解像天地。
1898年,Golgi(高尔基):发现细菌中高尔基体的显微学家。他将细胞用硝酸银染色而成就了人类细胞研究上的一大步。
1924年,Lacassagne(兰卡辛):与其实验工作伙伴共同发展出放射线照相法,这项发明便是利用放射性钋元素来探查生物标本。
1930年,Lebedeff(莱比戴卫):设计并搭配架干涉显微镜。另外由Zernicke(卓尼柯)在1932年发明出相位差显微镜,两人将传统光学显微镜延伸发展出来的相位差观察使生物学家得以观察染色活细胞上的种种细节。
1941年,Coons(昆氏):将抗体加上萤光染剂用以侦测细胞抗原。
1952年,Nomarski(诺马斯基):发明干涉相位差光学系统。此项发明不仅享有专利权并以本人命名之。
1981年,Allen and Inoue(艾伦及艾纽):将光学显微原理上的影像增强对比,发展趋于境界。
1988年,Confocal(共轭焦)扫描显微镜在市场上被广为使用。
数码显微镜
数码显微镜是将精锐的光学显微镜技术、的光电转换技术、液晶屏幕技术地结合在一起而开发研制成功的一项高科技产品。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。
世通仪器检测在全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,校准证书带标,出证书快,证书可加急,报价流程:发公司名称和仪器清单或者仪器图片量程-收到清单开始报价-价格合适预排时间上门检测-检测好1-5天出证书-寄回证书-转款。欢迎来电咨询:陈工能角度尺又被称为角度规、游标角度尺和量角器,是利用游标读数原理来直接测量工件角或进行划线的一种角度量具。角度尺适用于机械加工中的内、外角度测量,可测 0°-320° 外角及 40°-130° 内角。
角度尺的读数机构是根据游标原理制成的。主尺刻线每格为1°。游标的刻线是取主尺的29°等分为30格,因此游标刻线角格为29°/30,即主尺与游标一格的差值为2',也就是说角度尺读数准确度为2'。除此之外还有5'和10'两种精度。其读数方法与游标卡尺完全相同。测量时应先校准零位,角度尺的零位,是当角尺与直尺均装上,而角尺的底边及基尺与直尺无间隙接触,此时主尺与游标的“0”线对准。调整好零位后,通过改变基尺、角尺、直尺的相互位置可测试0-320°范围内的任意角。
应用角度尺测量工件时,要根据所测角度适当组合量尺,
角度尺的结构:它由尺身、90°角尺、游标、制动器、基尺、直尺、卡块等组成。
角度尺的测量范围
图2:Ⅰ型图
图2:Ⅰ型图
游标角度尺有Ⅰ型Ⅱ型两种,其测量范围分别为0°~320°和0°~360°测量时,根据产品被测部位的情况,先调整好角尺或直尺的位置,用卡块上的螺钉把它们紧固住,再来调整基尺测量面与其它有关测量面之间的夹角。这时,要先松开制动头上的螺母,移动主尺作粗调整,然后再转动扇形板背面的微动装置作细调整,直到两个测量面与被测表面密切贴合为止。然后拧紧制动器上的螺母,把角度尺取下来进行读数。
1、测量0°-50°之间角度
角尺和直尺全都装上,产品的被测部位放在基尺和直尺的测量面之间进行测量。
2、测量50°-140°之间角度
可把角尺卸掉,把直尺装上去,使它与扇形板连在一起。工件的被测部位放在基尺和直尺的测量面之间进行测量。也可以不拆下角尺,只把直尺和卡块卸掉,再把角尺拉到下边来,直到角尺短边与长边的交线和基尺的尖棱对齐为止。把工件的被测部位放在基尺和角尺短边的测量面之间进行测量。
3、测量140°-230°之间角度
把直尺和卡块卸掉,只装角尺,但要把角尺推上去,直到角尺短边与长边的交线和基尺的尖棱对齐为止。把工件的被测部位放在基尺和角尺短边的测量面之间进行测量。
4、测量230°-320°之间角度
把角尺、直尺和卡块全部卸掉,只留下扇形板和主尺(带基尺)。把产品的被测部位放在基尺和扇形板测量面之间进行测量。 [2]角度尺的读数方法,和游标卡尺相同,先读出游标零线前的角度是几度,再从游标上读出角度“分”的数值,两者相加就是被测零件的角度数值。
在角度上,基尺是固定在尺座上的,角尺是用卡块固定在扇形板上,可移动尺是用卡块固定在角尺上。若把角尺拆下,也可把直尺固定在扇形板上。由于角尺和直尺可以移动和拆换,使角度尺可以测量0º~320º的任何角度。
角尺和直尺全装上时,可测量0º~50º的外角度,仅装上直尺时,可测量50º~140º的角度,仅装上角尺时,可测量140º~230’的角度,把角尺和直尺全拆下时,可测量230º~320º的角度(即可测量40º~130º的内角度)。
量角尺的尺座上,基本角度的刻线只有0~90º,如果测量的零件角度大于90º,则在读数时,应加上一个基数(90º;180º;270º;)。当零件角度为:>90º~180º,被测角度=90º+量角尺读数,>180º~270º,被测角度=180º+量角尺读数,>270º~320º被测角度=270º+量角尺读数。
用角度尺测量零件角度时,应使基尺与零件角度的母线方向一致,且零件应与量角尺的两个测量面的全长上接触良好,以免产生测量误差。 [2]使用前,先将角度尺擦拭干净,再检查各部件的相互作用是否移动平稳可靠、止动后的读数是否不动,然后对零位;测量时,放松制动器上的螺帽,移动主尺座作粗调整,再转动游标背面的手把作精细调整,直到使角度尺的两测量面与被测工件的工作面密切接触为止。然后拧紧制动器上的螺帽加以固定,即可进行读数;测量完毕后,应用汽油或酒精把角度尺洗净,用干净纱布仔细擦干,涂以防锈油,然后装入匣内。
全国可燃气体报警器热销信息